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Abstract
In fine-grained opinion mining, the task of aspect
extraction involves the identification of explicit
product features in customer reviews. This task has
been widely studied in some major languages, e.g.,
English, but was seldom addressed in other minor
languages due to the lack of annotated corpus. To
solve it, we develop a novel deep model to trans-
fer knowledge from a source language with labeled
training data to a target language without any an-
notations. Different from cross-lingual sentiment
classification, aspect extraction across languages
requires more fine-grained adaptation. To this end,
we utilize transition-based mechanism that reads a
word each time and forms a series of configurations
that represent the status of the whole sentence. We
represent each configuration as a continuous fea-
ture vector and align these representations from dif-
ferent languages into a shared space through an ad-
versarial network. In addition, syntactic structures
are also integrated into the deep model to achieve
more syntactically-sensitive adaptations. The pro-
posed method is end-to-end and achieves state-of-
the-art performance on English, French and Span-
ish restaurant review datasets.

1 Introduction
Different from coarse-grained sentiment classification which
predicts an overall sentiment polarity for each sentence, fine-
grained opinion mining involves the identification of aspect
terms describing product features, which is important for in-
formation extraction. However, for this task, a crucial issue
is the difficulty in collecting sufficient labeled data to train a
precise classifier, especially for resource-limited languages.
Existing cross-lingual approaches mainly focused on coarse-
grained sentiment classification. To the best of our knowl-
edge, there is yet no studies on cross-lingual aspect extrac-
tion, due to the difficulties in word-level feature adaptation.

Aspect extraction in supervised mono-lingual setting has
been studied extensively [Qiu et al., 2011; Liu et al., 2015;
Yin et al., 2016; Wang et al., 2016; 2017]. Given a sen-
tence e.g., “We love the pink pony and atmosphere.”, the
aspect terms to be extracted are pink pony and atmosphere.

Most existing work treat this task as a sequence labeling
problem that predicts a label for each token. It has also
been shown that syntactic relations are crucial to identify
target terms [Qiu et al., 2011; Yin et al., 2016; Wang et
al., 2016]. Token-level knowledge transfer has been pro-
posed for cross-domain aspect extraction [Li et al., 2012;
Ding et al., 2017], where the models are built upon common
sentiment lexicons. However, these methods only work for
homogeneous space within the same language. Moreover,
token-level knowledge is much more difficult to be trans-
ferred across languages, because the segmentation rules may
vary in different languages. For instance, an aspect can be
expressed by a single word in one language but by multiple
words in another language. To conquer this limitation, we
adopt transition-based models, which have been used for de-
pendency parsing [Dyer et al., 2015] and named entity recog-
nition [Lample et al., 2016]. Different from sequence label-
ing, transition-based models learn a sequence of actions that
read words sequentially from a buffer and avoid the separa-
tion of a phrase. These actions depend on the configuration
representation at the previous timestamp. To transfer knowl-
edge, we aim to learn a shared space for configurations from
different languages.

Recently, adversarial networks [Goodfellow et al., 2014]
have been widely used and shown promising results for do-
main adaptation [Ganin et al., 2016]. Chen et al. [2016] ap-
plied the domain adversarial network to cross-lingual senti-
ment classification which learns a domain discriminator for
sentence representations. However, fine-grained adaptation is
much more difficult than sharing of sentence representations.
To make adaptation successful, we propose a transition-based
adversarial network, where a generator is used to produce
language-invariant configuration features, and a discrimi-
nator competes to discriminate the configurations between
source and target languages. Since dependency relations have
proven to play an important role in identification of aspect
terms, and are invariant across different languages when us-
ing universal dependency parsers [de Marneffe et al., 2014],
we build partial dependency trees when computing the con-
figuration representations to capture the key components dur-
ing transfer. We also use these relations as auxiliary labels
that helps the adversarial network to learn better representa-
tions. Our main contributions are three-fold: 1) We propose
a novel transfer strategy that uses sentence configuration as
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invariant features for cross-lingual word predictions. 2) We
integrate syntactic information to assist knowledge transfer
across different languages. 3) We conduct extensive experi-
ments to show the effectiveness of our proposed model.

2 Related Work
Aspect extraction has been actively studied for English cor-
pus. Early works have applied unsupervised methods to ex-
tract the target words using association rules mining [Hu and
Liu, 2004] and manually designed rules based on syntactic re-
lations [Qiu et al., 2011]. Several supervised approaches have
later been proposed including HMMs with feature engineer-
ing [Jin and Ho, 2009] and deep learning [Liu et al., 2015;
Yin et al., 2016; Wang et al., 2016]. These supervised meth-
ods all treat the problem as a sequence labeling task that work
on each token in a sentence. For cross-domain aspect ex-
traction, Li et al. [2012] proposed a boosting-style method to
expand target lexicon through common sentiment words and
syntactic relations across domains. Ding et al. [2017] devel-
oped a deep model that considers structural correspondences.
The above methods depend on common sentiment lexicon,
which is not available for heterogeneous spaces across lan-
guages.

For cross-lingual sentiment classification, one approach is
to use machine translation to translate into source or target
language to build a classifier for target language [Wan, 2009].
Another approach is to use parallel corpora or word pairs to
learn shared features [Prettenhofer and Stein, 2010; Meng et
al., 2012; Zhou et al., 2015]. Bilingual representation learn-
ing has also been widely studied [Klementiev et al., 2012;
Hermann and Blunsom, 2014; Chandar et al., 2014; Gouws
et al., 2015; Zhou et al., 2016]. Moreover, Zhou et al. [2014]
used marginalized stack denoise auto-encoder to align doc-
ument representations from heterogeneous spaces. Chen et
al. [2016] applied domain adversarial network [Ganin et al.,
2016] to train language-independent document representa-
tions. Among all these, fine-grained-level adaptation has not
been investigated yet.

3 Problem Definition & Motivation
The task studied in this paper involves the identification of ex-
plicit aspect terms in each review sentence. Formally, given a
sequence of words x=(w1, w2, ..., wn), the transition model
reads words sequentially and outputs a sequence of actions
y=(y1, y2, ..., ym), resulting in a sequence of configurations
c = (c1, c2, ..., cm), where m is the number of timestamps.
Each yt ∈ A, where A = {OUTPUT, SHIFT,REDUCE}.
Each ct = (cot , c

c
t , c

b
t) consists of three components that par-

tition the whole sentence: output stack (cot ), candidate stack
(cct ) and buffer (cbt), where each component consists of a sub-
sequence of tokens (or empty). The aspect terms are the com-
plete segments in cct when yt+1 = REDUCE.

In transition-based models, each configuration ct repre-
sents a partition of the whole sentence at timestamp t. The
concept of configuration is our primary motivation for knowl-
edge transfer across different languages. Since each con-
figuration summarizes the current status and decides on the
next action, by aligning them from different languages into

word
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Figure 1: The overall architecture TAN.

a shared space, we can transfer the knowledge of how to
take actions in the target language. Compared with token-
level representation, the configuration represents the global
information including the entire history processed and the fu-
ture ahead. The adaptation within a transition system is more
aligned with cognitive modeling: a reader makes incremen-
tal actions in the same way regardless of different languages.
Moreover, token-level predictions require accurate learning
for different positions within word segments, e.g., the predic-
tion for service staff should be “B” (beginning of aspect) for
service and “I” (inside of aspect) for staff. However, the trans-
lation is personnel de service in French, which consists of 3
words. When the segments differ, adaptation becomes noisy
and inaccurate. This could be addressed using transition sys-
tems, which use a candidate stack to store and represent a
complete aspect segment to be transfered across languages.

It has been shown that universal dependency relations are
invariant across different languages. Since Dyer et al. [2015]
showed the effectiveness of a transition model for depen-
dency parsing by predicting the transition or relation at each
timestamp according to the current configuration, we take this
sequential relation prediction as an auxiliary task to our main
task. Moreover, motivated by auxiliary conditioned genera-
tive adversarial network (ACGAN) [Odena et al., 2017], we
integrate this auxiliary task into the transition-based adver-
sarial network to make the transfer more coherent with the
language-invariant syntactic structure. In addition, we inte-
grate syntactic structure into the representation of each con-
figuration. This helps to make the representations more sen-
sitive to the important words in the sentence. For example,
if the stack consists of “We love”, the dependency tree will
output the representation for love, which is the parent of We.
This construction is able to attend on the important word love.

4 The Proposed Model
We name our proposed model Transition-based Adversarial
Network (TAN) in the sequel. Figure 1 shows the overall
structure which consists of a feature extractor (F) and three
classifiers: an action classifier (Y), an auxiliary predictor (A)
and a domain discriminator (D). At timestamp t, the input
sequence is partitioned into an output stack, a candidate stack
and a buffer. Each component computes its own represen-
tation through a recurrent neural network (RNN) in the last
layer, which are then integrated into the configuration rep-
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Action Output Candidate Buffer Segment
[] [] [We love the pink pony and atmosphere] —

OUTPUT [We] [] [love the pink pony and atmosphere] —
OUTPUT [We love] [] [the pink pony and atmosphere] —
OUTPUT [We love the] [] [pink pony and atmosphere] —
SHIFT [We love the] [pink] [pony and atmosphere] —
SHIFT [We love the] [pink pony] [and atmosphere] —
REDUCE [We love the pink pony] [] [and atmosphere] (pink pony)
OUTPUT [We love the pink pony and] [] [atmosphere] —
SHIFT [We love the pink pony and] [atmosphere] [] —
REDUCE [We love the pink pony and atmosphere] [] [] (atmosphere)

Figure 2: An example of all the transition actions and states of each configuration of a sentence.

resentation that is fed into all three classifiers. In the fol-
lowing, we first introduce a basic transition-based model in
Section 4.1, then illustrate the integration of an adversarial
component in Section 4.2, and finally present the final model
by considering the syntactic information in Section 4.3.

4.1 Transition-based Model
The transition-based method is formalized as a sequence of
actions that read words sequentially from a buffer [Dyer et
al., 2015]. It consists of an output stack, a candidate stack
and a buffer. The output stack stores the processed words, the
candidate stack stores incomplete aspect candidates until all
the words for an aspect are processed. The buffer contains the
words that have yet to be processed. There are three possible
transition actions: Output, Shift, and Reduce.

1. Output - Move the word on top of the buffer to the out-
put stack and label it as “None”.

2. Shift - Move the word on top of the buffer to the candi-
date stack.

3. Reduce - Move every word in the candidate stack to the
output stack and label them as “Aspect”.

The algorithm starts with the buffer containing every word
in the sentence. At each configuration, one action is taken,
until the algorithm terminates when both the candidate stack
and buffer are empty. An illustration of the process is shown
in Figure 2. The next action depends on the current config-
uration, which is computed from the representations of the 3
components: output stack, candidate stack and buffer. We use
Gated Recurrent Unit (GRU), one of the RNN architectures to
compute the representation of each component. A GRU takes
the word embedding as the input and produces the output of
the last cell to represent the corresponding subsequence, as
shown in Figure 3 on the left. We take the reverse GRU to
compute the buffer representation and use another vector to
represent empty stack when the candidate stack is empty.

Formally, let xO
t , xC

t and xB
t denote the input sequence

for output stack, candidate stack and buffer, respectively, at
timestamp t. Denote the hidden representations by hO

t for
output stack, hC

t for candidate stack, and hB
t for buffer. The

final feature representation for the configuration is

ht = tanh(Wh[hO
t : hC

t : hB
t ] + bh), (1)

where hO
t = fGRU (xO

t , h0; Θ), hC
t = fGRU (xC

t , h0; Θ), and
hB
t = fRGRU (xB

t , h0; Θ). Here, the operator [:] denotes the
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Figure 3: Configuration representation constructed from RNNs.

concatenation of vectors, the model fGRU produces the last
hidden representation of a forward GRU network, and the
model fRGRU indicates the reverse GRU network that reads
words in the backward direction. We use Θ to denote all the
GRU parameters. The action yt+1 to be taken at the next time
stamp is obtained via yt+1 =softmax(Wyht + by).

4.2 Transition-based Adversarial Network
To adapt the above model to another language, we apply do-
main adversarial network (DAN) to learn domain-invariant
features [Ganin et al., 2016]. The intuition is to make each
configuration representation invariant across languages, but
discriminative for action predictions. Indeed, at each state of
transition, the configuration should share similar character-
istics across languages to inform the next action. To apply
DAN, we create two classifiers: a transition action predictor
Y and a language discriminator D to discriminate between
configurations from source and target languages.

The corresponding structure is shown in Figure 3 on the
right. Denote by θf , θy , and θd the parameters for feature
learning, action prediction, and language prediction, respec-
tively. The discriminator generates a probability distribu-
tion over languages P (S|ht), where ht obtained from (1) is
the hidden representation for the whole configuration at time
stamp t. Here P (S = 1|ht) indicates the probability of ht

belonging to the source language. The predictions for action
label and language label are computed on top of a fully con-
nected layer

yt+1 = softmax(Wyh
y
t + by), (2)

yd
t = softmax(Wdh

d
t + bd), (3)

where hy
t =tanh(Wy

hht+by
h) and hd

t =tanh(Wd
hht+bd

h).
The model is trained by minimizing

E1(θf , θy, θd) = Ly(θf , θy)− αLd(θf , θd) (4)
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Figure 4: A configuration with proposed transition-based model.

for feature generator, and by minimizing Ld(θf , θd) for the
language discriminator. HereLy andLd are the cross-entropy
losses for action prediction and language classifier, respec-
tively. The hyper parameter α is used to tune the trade-off
between the two losses. The saddle points θ̂f , θ̂y , and θ̂d can
be found as a stationary point of the following updates:

θf ← θf − µ
(
∂Ly

∂θf
− α∂Ld

∂θf

)
, (5)

θy ← θy − µ
∂Ly

∂θy
, (6)

θd ← θd − µ
(
α
∂Ld

∂θd

)
. (7)

4.3 Incorporate Syntactic Relations
The previous model ignores the syntactic relations among the
words in each sentence, which is, however, crucial for as-
pect extraction and bridging the gap between source and tar-
get languages. To incorporate syntactic information in mono-
lingual setting, Wang et al. [2016] proposed a dependency-
tree-based recursive neural network that computes the hidden
representation of each word as a composition function of its
children. Following this idea, a straightforward method is
to obtain the hidden representation of each word through re-
cursive neural network and use it as the input to GRU for
the output stack, candidate stack and buffer. However, the
relation information may have little effect to the action pre-
diction when the dependency path is too long and the model
consists of multiple layers. Moreover, the hidden representa-
tion for each stack/buffer may contain information from the
others due to the dependency tree. This contradicts the idea
that each stack only contains partial information given by its
content. To overcome these potential limitations, we propose
to construct partial trees in the output stack.

Figure 4 presents an example configuration at timestamp t′.
For each sentence, we first produce a dependency tree from
the parser. At each configuration, we pick all the edges in the
tree that connect the words in the output stack and keep the
representation for the highest node in each connected com-
ponent. The rest of the words in the output stack that are
not connected are then linked through recurrent edges. As
shown in Figure 4, the output stack consists of “We love the
pink pony and”. According to the dependency tree, love is
the highest node and is connected to all the other words in

the output stack, hence, we only keep the hidden representa-
tion of love that is recursively computed from all the words
below. Formally, given an input sentence with pre-generated
dependency tree, at time stamp t, let xO

t = {xO1 , ..., xOnO
t
},

xC
t = {xC1 , ..., xCnC

t
}, xB

t = {xB1 , ..., xBnB
t
} represents the

list of word embeddings for the output stack, candidate stack,
and buffer, respectively. For the output stack, we compute the
hidden representation hOi of each word as:

hOi = tanh

Wv · xOi + b +
∑

k∈KO
i

Wrik · hOk

 , (8)

where KO
i denotes the set of children of node i in the output

stack, rik denotes the dependency relation between node i
and its child node k, and hOk is the hidden vector of node k in
the output stack. When KO

i = ∅, we ignore the last addition
in (8). To compute the final hidden representation hO

t for
output stack, we select all the hOj ’s when the jth node does
not have any parent in the output stack or it is the root node
in the tree and denote the set of these node indexes as IOt :

hO
t = fGRU ({hOj }, h0; Θ), (j ∈ IOt ). (9)

The hidden representations for the candidate stack and the
buffer are produced by GRU and RGRU, respectively, as

hC
t = fGRU ({hCi }, h0; Θ), (i ∈ {1, ..., nC

t }), (10)

hB
t = fRGRU ({hBi }, h0; Θ), (i ∈ {1, ..., nB

t }), (11)

where hCi =tanh(Wv ·xCi +b) and hBi =tanh(Wv ·xBi +b).
We only incorporated the syntactic information in hO

t be-
cause only the output stack contains rich processed informa-
tion. And we use another embedding to represent the empty
stack, which is randomly initialized and trained.

To explicitly make use of the syntactic relations, we inte-
grate an auxiliary task to predict the dependency relation of
the word about to be processed in each configuration. In-
spired by [Odena et al., 2017] which applies an auxiliary
classifier to help the adversarial training, our auxiliary task to
predict the relation between the word on top of the buffer and
its parent is helpful to decide on next action. Moreover, this
implicitly conditions the language representations hd

t on the
relation labels, which helps to better align language features
based on syntactic structure. To avoid syntactic inconsisten-
cies across languages, we apply universal dependency parsers
and utilize its taxonomy1 to group relations into more general
categories as the auxiliary labels2. The auxiliary prediction is

ya
t =softmax(Wah

a
t + ba), where ha

t =tanh(Wa
hht + ba

h).

By plugging the loss of the auxiliary prediction task into (4),
our final objective becomes

E2(θf , θy, θa, θd) = Ly(θf , θy) + βLa(θf , θa)− αLd(θf , θd),

1http://universaldependencies.org/
2There are in total 15 categories. The groupings are: {nsubj, obj,

iobj, nsubjpass, dobj}, {csubj, ccomp, xcomp}, {cc, conj}, {fixed,
flat, compound, mwe}, {expl, obl, vocative, dislocated}, {advcl},
{advmod, discourse, neg}, {aux, cop, mark, auxpass}, {nmod, ap-
pos, nummod}, {acl}, {amod}, {det, clf, case}, {list, parataxis},
{root}, {punct, dep}
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Data Language Training Test Total
En English 2,000 676 2,676
Fr French 1,733 696 2,429
Es Spanish 2,070 881 2,951

Table 1: Dataset statistics showing number of sentences

where La is the cross-entropy loss for the auxiliary task with
θa denoting its parameters. θy and θd are updated using (6)-
(7). The updates for θf and θa are:

θf ← θf − µ
(
∂Ly

∂θf
+ β

∂La

∂θf
− α∂Ld

∂θf

)
, (12)

θa ← θa − µ
(
β
∂La

∂θa

)
. (13)

During training, each sentence is fed into the common fea-
ture extractor to produce configuration vectors. For source
language, each configuration is fed into the action, auxiliary
and language predictors, whereas for target language, only
auxiliary and language classifiers are trained.

5 Experiments
For experiments, we use the restaurant reviews from English,
French and Spanish taken from SemEval Challenge 2016 task
5. The statistics of the datasets are listed in Table 1. We use
labeled training data from the source language and unlabled
training data from the target language to train the model. For
testing, we conduct both transductive and inductive experi-
ments to test our model on the unlabeled training data and the
test data of the target language. The results are shown in F1
scores. For aspect extraction, only exact match is counted as
correct when dealing with multi-word aspect terms.

Regarding experimental setting, the word embeddings are
pre-trained using multivec [Bérard et al., 2016] that gener-
ates bilingual word embeddings with parallel corpus. The
parallel corpus are from Europarl3 that contains 2M sen-
tences for each language. The dependency trees are generated
from Stanford universal dependencies4. The whole network
is trained with SGD using learning rate 0.02. The trade-off
parameters are α = 0.1 and β = 1. The size of word embed-
dings is 100 and the hidden layer size is 50. Each experiment
is trained for 20 epochs and the best performance is reported.
For the overall complexity, our model takes 10mins for train-
ing 1 epoch with 4000 sentences using Intel(R) Xeon(R) CPU
E5-1650 v2 @ 3.50GHz. Testing is within seconds.

5.1 Experimental Results
To the best of our knowledge, there is not yet any work on
cross-lingual aspect extraction. To make fair comparisons,
we revise some popular models listed in the following to be
fitted into the cross-lingual setting as our baselines:
• Translate-TAN, Translate-CRF: Translate the target

data to source language using google translator, and train
a TAN or linear-chain CRF with labeled source data to
make predictions on the translated target data.

3http://www.statmt.org/europarl/
4https://nlp.stanford.edu/software/stanford-dependencies.shtml

• NoAdp: Train the model only on source data using TAN
without adaptation and then test on target data.
• A-RNN: With a RNN [Liu et al., 2015] producing a hid-

den representation for each word, an adversarial network
with a language discriminator is applied on top.
• A-R2NN: Apply the model in [Wang et al., 2016] but

replace CRF with RNN on top of the dependency-tree-
based recursive neural network. An adversarial network
with a language discriminator is then applied.
• CrossCRF: Linear-chain CRF [Jakob and Gurevych,

2010] with non-lexical features that are similar across
domains. In cross-lingual setting, we use universal POS
tags, sentiment lexicons, universal dependencies etc.
• CL-DSCL: A deep model with structural correspon-

dence learning proposed by [Ding et al., 2017]. We con-
vert the dependencies in the rules to universal dependen-
cies and use sentiment lexicons for all three languages.

Specifically, for A-RNN, A-R2NN and CL-DSCL, we
combine training sentences from labeled source language and
unlabeled target language to train the models. Given a train-
ing sentence, A-RNN and A-R2NN compute final features
for each word with RNN, which is then fed into a language
discriminator to predict the language label. For source lan-
guage, a token classifier is jointly applied to predict “BIO”
labels. CL-DSCL integrates auxiliary classifiers into RNN. If
a training sentence is from source language, both the auxiliary
and “BIO” classifier are applied on top of the hidden vector
of each word. Only auxiliary classifier is applied for target
training sentences. The auxiliary task is to decide whether
the word satisfies some rules describing universal dependency
relations among aspect and opinion words. CrossCRF only
takes training sentences from source language to train. All
the trained models are tested on test sentences for target lan-
guage to obtain “BIO” label for each token.

The comparison results are shown in Table 2. Obviously,
the proposed model TAN achieves the state-of-the-art results
most of the time with large performance gain. The perfor-
mances of both A-RNN and A-R2NN are much worse com-
pared to TAN, even though the syntactic structure is incor-
porated to bridge the gap between source and target lan-
guages (A-R2NN). This proves our assumption that word-
level knowledge is hard to be transferred across languages.
For CL-DSCL, the result shows 18.54%, 5.51% drop com-
pared to TAN for inductive experiments transferring from En-
glish to French and Spanish, respectively. The inferior perfor-
mances for the cross-domain models indicate the difficulty to
build the correspondences with heterogeneous spaces across
languages, compared to domain adaptation in the same lan-
guage. This shows the advantage of our proposed model that
learns transferable actions across domains.

We also conduct experiments to show the effect of each
component of TAN. The results are listed in Table 3. The
first column indicates the modification of TAN: -hier replaces
the hierarchical grouping of dependency relations with exact
relation as the label; -aux removes the auxiliary task; -dan
removes domain-adversarial network; -ptree removes partial
tree for the output stack and +ftree use the complete depen-
dency tree to compute the hidden representation of each word
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Models En→Fr En→Es Fr→En Fr→Es Es→En Es→Fr
Train Test Train Test Train Test Train Test Train Test Train Test

Translate-TAN 45.09 40.74 45.85 41.08 39.28 38.74 32.27 34.54 45.94 41.28 41.52 36.38
Translate-CRF 25.23 23.15 28.26 30.10 25.89 26.79 31.55 30.63 32.24 26.66 24.05 20.90

NoAdp 27.71 26.13 27.56 31.31 41.21 38.29 45.43 48.21 37.52 30.39 37.95 37.89
A-RNN 22.92 20.54 31.11 34.04 29.62 27.11 40.58 40.77 35.49 30.26 34.52 31.02
A-R2NN 27.92 23.41 28.63 28.65 36.43 33.25 38.55 39.45 40.83 34.16 42.83 37.19

CrossCRF 20.41 16.83 16.17 18.22 21.63 19.02 6.90 6.81 10.13 8.28 12.01 10.24
CL-DSCL 33.67 31.48 44.56 45.01 51.75 47.27 53.23 55.89 50.22 45.90 38.66 34.17

TAN 53.27 50.02 49.38 50.52 55.38 50.30 55.32 57.65 51.99 44.14 51.16 48.78

Table 2: Comparisons with different baselines.

Models En→Fr En→Es Fr→En Fr→Es Es→En Es→Fr
Train Test Train Test Train Test Train Test Train Test Train Test

TAN 53.27 50.02 49.38 50.52 55.38 50.30 55.32 57.65 51.99 44.14 51.16 48.78
-hier 50.47 45.73 49.99 50.23 50.70 46.48 50.54 54.07 48.48 42.28 49.81 45.89
-aux 51.30 45.05 47.22 49.00 48.12 45.40 45.17 50.29 44.01 39.05 45.91 42.47
-dan 40.04 36.20 39.87 44.09 47.91 40.40 50.18 52.83 44.44 39.56 42.80 36.04

-ptree 32.62 29.50 28.84 30.94 40.40 35.12 39.73 44.89 32.39 28.75 39.05 35.00
+ftree 48.78 43.28 47.24 48.20 52.68 48.90 50.89 53.50 49.19 43.99 50.65 45.12

Table 3: Comparisons with different variants of the proposed model.
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Figure 5: F1 score vs percentage of unlabeled target training data.

and feed it into a GRU for the representations of output, can-
didate and buffer. Among all these variants, -hier is most
comparable, although worse than TAN. This shows the ben-
efit of relation grouping in the transfer setting. Indeed, in
the hierarchy of universal dependencies, higher level is more
general to be shared across languages. By removing the aux-
iliary task (-aux), the performance drops considerably for the
last four experiments. It is even worse when removing DAN
(-dan). This shows either the auxiliary task or DAN alone
is not good enough to capture shared information. By us-
ing auxiliary-conditional DAN, we can bridge the language
gap through shared syntactic space. We also observe the ef-
fect of using partial dependency tree to compute the output
representation, compared with a simple GRU (-ptree) or a
complete dependency tree (+ftree). This indicates that RNN
fails to capture syntactic structure and may produce unneces-
sary noise, and a complete dependency tree brings excessive
knowledge about the words not contained in the stack, mak-
ing it hard to propagate information when the path is long.

To show that our model indeed benefits from unlabeled
target data during training and learns language-invariant fea-
tures that are useful for predictions, we conduct experiments
to vary the number of unlabeled target data for training. The
percentage of the unlabeled target data increases from 0.0 to
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Figure 6: Sensitivity tests for hyper-parameters.

1.0. We select two transfer settings: Es→Fr and En→Es and
compare TAN with CL-DSCL and A-R2NN. The inductive
performances are shown in Figure 5. TAN shows more stable
improvements with the increasing number of target training
data compared with the other 2 baselines. This proves that
TAN is able to learn from unlabeled target for adaptation.

We also conduct sensitivity tests on the hyper-parameters
of TAN. As shown in Figure 6, we separately vary the trade-
off parameter β for Fr→En and the hidden layer dimension
of the configuration representation for En→Es. We plot both
the transductive and inductive results on training and test data,
respectively. The results are overall stable for β and change
slowly when changing the dimension of hidden layer from
40 to 100. This proves the robustness and stableness of our
proposed model against these variations.

6 Conclusion
We propose a novel transition-based deep model for cross-
lingual aspect extraction that integrates domain adversarial
network with syntactic information. Our model focuses on
learning transferable configuration for the sentence at each
timestamp and aims to learn a shared space that is action-
sensitive but language-invariant given the syntactic structure.
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